Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice
نویسندگان
چکیده
The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.
منابع مشابه
Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model
Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...
متن کاملPentoxifylline Attenuates Malathion-Induced Oxidative Damage in Rat
Introduction: Toxic effects of pesticides are commonly associated with reactive oxygen species damage and pentoxifylline a phosphodiesterase inhibitor is a drug well known for antioxidant properties. The purpose of this study was to evaluate the oxidative damages following a subacute exposure to malathion, an organophosphorus insecticide and pentoxifylline's ability to counteract these effect...
متن کاملThe Neuroprotective Effect of Maltol against Oxidative Stress on Rat Retinal Neuronal Cells
PURPOSE Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro. METHODS R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an ox...
متن کاملInflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography–Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts
Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate ...
متن کاملInhibitory effect of concomitant administration of Zataria multiflora Boiss. against oxidative damage-induced by sub-acute exposure to arsenic in rats
To evaluate the protective effect of Zataria multiflora boiss. (Zm) extract against arsenic-induced oxidative damage in rats. Rats were orally treated with various doses of Zm (200, 400, and 600 mg/kg) and sodium arsenite (5.5 mg/ kg), alone or in combination, once daily for 30 consecutive days. Twenty-four hours after the last dose, rats were euthanized, and biochemical studies were conducted ...
متن کامل